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Abstract

The linear stability of an oscillatory shear flow in a differentially heated vertical channel was investigated numerically

for Re = 1000 and Pr = 0.7. The Galerkin method is used to solve the disturbance momentum and energy equations.

The results show that the least stable disturbance could be three-dimensional for higher flow oscillation frequency

and larger flow oscillation amplitude, while it is two-dimensional in the isothermal oscillatory and heated steady chan-

nel flows. The flow oscillation acts to stabilize the flow at moderate and high oscillation frequencies, where the degree of

stabilization increases with the oscillation amplitude; but, it acts to destabilize the flow and the amount of destabiliza-

tion increases with the oscillation amplitude at low oscillation frequency. It is shown from the balance of disturbance

kinetic energy budget that shear production is responsible for the flow instability. For the 2-D wave initiated instability,

almost all the shear production is generated during a very short time interval at low oscillation frequency, while it is

generated during most of the time of a cycle for the 3-D disturbance.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The processes of momentum, heat and mass trans-

ports in oscillatory isothermal or non-isothermal flows

in tubes, ducts and channels have a variety of applications

ranging from electronic device cooling, heat exchanger,

biomedical sciences, and other cases of practical interests.

Kurzweg [2], Zhang andKurzweg [1], Kurzweg and Zhao

[3], Kaviany [4], and Kaviany and Reckker [5] studied the

problem of enhanced axial heat transfer in viscous fluids
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subjected to sinusoidal oscillations in conduits. Their ana-

lytical and experimental results show that the axial heat

transferred in such oscillating flows can be several orders

ofmagnitude larger than that obtained by pure molecular

conduction. Liao et al. [6] presented an exact solution for

small oscillatory flow Reynolds numbers in a zero-mean

oscillatory laminar channel flow with a uniformly heated

wall to simulate the forced convection cooling of elec-

tronic components on printed circuit boards. It was found

that a maximum heat transfer enhancement of the order

of 200%over the steady-flowcase is obtained atWormers-

ely number of 2.0. Faghri et al. [7] indicated that the effect

of pulsations on the average heat transfer rate of laminar

oscillatory flow in a pipe is the result of an interaction

between the velocity and temperature pulsations. The
ed.
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Nomenclature

Es, Eb, Ed disturbance kinetic energies, defined in

Eq. (18)

~ex unit vector in the x direction

g gravitational acceleration

Gr Grashof number, gbTDT
�
wð2LÞ

3=m2

L half-width of channel

p pressure

Pr Prandtl number

Re Reynolds number, U�
0L=m

t time

T period

DT �
w wall temperature difference

T � dimensional temperature

T �
m mean wall temperature

UB velocity at laminar base state

U�
0 centerline velocity of the steady laminar flow

urms root mean square streamwise perturbation

velocity, defined in Eq. (30)

u,v,w flow velocity components
~V fluid velocity

x,y,z coordinates

Greek symbols

a streamwise wavenumber

b spanwise wavenumber

br =L/d
bT thermal expansion coefficient

d Stokes-layer thickness,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=X�p

D ¼ K=b2r , see Eq. (8)

h dimensionless temperature, ðT � � T �
mÞ=DT �

w

hB temperature at laminar base state

K oscillatory pressure gradient amplitude

m fluid kinematic viscosity

q fluid density

r disturbance growth rate

x1 critical wave frequency of steady flow

X oscillation frequency

Superscripts

* dimensional quantity
0 infinitesimal disturbance
^ complex amplitude function of disturbance,

defined in Eq. (14)

Subscript

B at laminar base state
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heat transfer characteristics of pulsating flow in curved

tube by Rabadi et al. [8] showed that the Nussult number

varies widely during a cycle and the effect is greatest for

small values of the frequency parameter.

In the stability analysis of two-dimensional distur-

bances for non-zero-mean channel flow induced by oscil-

latory pressure gradient, Grosch and Salwen [9] found

that for small amplitudes of mean velocity oscillation

the modulated flow tends to stabilize the flow. For larger

amplitudes of oscillation the modulated flow tends to

destabilize the flow. Von Kerczek [10] also studied the

stability of two-dimensional waves for the oscillatory

plane Poiseuille flow by perturbation analysis about

the critical Reynolds number of 5772.22 (based on the

centerline velocity and half-width of channel). It was

found that the oscillatory flow is more stable than the

steady flow for values of oscillation frequencies greater

than about one tenth of the frequency of the steady flow

neutral disturbance. At very high and low oscillation fre-

quencies, oscillatory flow slightly destabilize the flow.

These results hold for the values of the velocity ampli-

tude ratio at least up to 0.25. He did not find any

strongly unstable modes. Singer et al. [11] performed

both linear stability and direct numerical simulation of

the oscillatory plane channel flow. Their results for
larger amplitudes of oscillation agree with those of

Von Kerczek but disagree with those of Grosch and

Salwen.

In the effects of oscillatory nature of boundary condi-

tions on the onset of Rayleigh–Benard convection, Finu-

cane and Kelly [12] first found both experimentally and

analytically that the onset could be delayed by thermal

modulation (heated sinusoidally from below) at rela-

tively high frequencies. The stabilizations on the onset

of Rayleigh–Benard or Marangoni convections by

means of non-planar oscillatory flows, where two com-

ponents of the basic flow in the horizontal plane which

are out of phase, were proposed by Kelly [14], Kelly

and Hu [13], and Or and Kelly [15]. They found that

the degree of stabilization seems likely to be substantial,

especially at large values of the Prandtl number. In the

linear stability analysis of mixed convection in a differen-

tially heated vertical channel without flow oscillation,

Chen and Chung [16] showed that the least stable distur-

bance is two-dimensional disturbance. However, the

linear instability only addresses the first stage of the

transition process—the growth of the linear waves prop-

agating in the streamwise direction. When the linear

wave amplitude exceeds a certain threshold, the non-lin-

ear interactions between waves arise. The flow transition
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phenomena of mixed convection in the vertical channel

flow were examined by Chen and Chung [17,18]. For a

flow configuration in a differentially heated vertical

channel, it is desired to know flow oscillation effects

on the flow stability characteristics. Thus the linear sta-

bility analysis was investigated in this paper.
2. Formulation

The problem under investigation is the oscillatory

heated shear flow, which is driven by both the imposed

oscillatory pressure gradient and the buoyancy force,

between two parallel long vertical plates separated by

a distance, 2L. A schematic of this system is given in

Fig. 1. The gravitational force is aligned in the negative

x-direction. The two vertical plates are kept at fixed tem-

peratures of T �
1 and T �

2, respectively. The dimensionless

governing equations for continuity, momentum and en-

ergy can be written as:

r � ~V ¼ 0 ð1Þ

o~V
ot

þ ð~V � rÞ~V ¼ �rp þ Gr

8Re2
h~ex þ

1

Re
r2~V ð2Þ

oh
ot

þ ð~V � rÞh ¼ 1

RePr
r2h ð3Þ

In the above equations, the coordinates are non-dimen-

sionlized by the half-width of channel, L, the velocity

ð~V Þ by the centerline velocity of the steady laminar

base flow, U �
0, the pressure (p) by qU �2

0 , and the time

(t) by L=U �
0. The parameters of Re ¼ U �

0L=m is the
g

ux,
wz,

vy,

∗
1T ∗T

L2

2

Fig. 1. The schematic of geometry and coordinate system

ðT �
2 > T �

1Þ.
Reynolds number, Pr is the Prandtl number, and

Gr ¼ gbTDT
�
wð2LÞ

3=m2 is the Grashof number, where

DT �
w ¼ T �

2 � T �
1 is the wall temperature difference. The

Boussinesq approximation is used here, and viscous dis-

sipation is neglected. Here h ¼ ðT � � T �
mÞ=DT �

w is the

dimensionless temperature, where T* is the instanta-

neous fluid temperature, and T �
m is the mean wall

temperature.

2.1. Laminar base flow

The base flow is fully developed laminar flow, which

are functions of y and t. The dimensionless imposed

oscillatory pressure gradient at base laminar flow is ex-

pressed as the following:

� opB
ox

¼ 2

Re
ð1þ K cosXtÞ ð4Þ

where X ¼ X�L=U �
0 is the dimensionless oscillation fre-

quency of the imposed pressure gradient, and X* is the

dimensional angular frequency. Here K is the amplitude

of the oscillatory pressure gradient. In the laminar base

flow, the above governing equations (2) and (3) can be

reduced to

oUB

ot
¼ � opB

ox
þ 1

Re
o2UB

oy2
þ Gr

8Re2
hB ð5Þ

o2hB
oy2

¼ 0 ð6Þ

where UB and hB ¼ ðT �
B � T �

mÞ=DT �
w are the velocity and

the temperature, respectively, of the laminar base flow.

The associated boundary conditions are

hBð�1; tÞ ¼ �1=2; hBð1; tÞ ¼ 1=2;

UBð�1; tÞ ¼ 0; UBð1; tÞ ¼ 0 ð7Þ

The solutions of Eqs. (5)–(7) can be derived as the

following:

UB ¼ 1� y2 þ Gr
96Re

ðy � y3Þ

þ DR
cosh brð1þ iÞy
cosh brð1þ iÞ � 1

� �
ieiXt

� �
ð8Þ

hB ¼ y=2 ð9Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and R denote the real part of the expres-

sion inside the braces. Here br ¼ L=d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XRe=2

p
is the

ratio of the half-width of channel to Stokes-layer thick-

ness, d, being defined as d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m=X�p

. In Eq. (8), D is

equal to K=b2
r , which is considered as the ratio of the

amplitudes of the oscillatory to steady velocity in the

isothermal oscillatory flow [10,11]. Fig. 2 plots the lam-

inar base velocity profiles (UB�s) at various times of

t = T/8, T/4, T/2, 3T/4, 7T/8, and T for Re = 1000,

X/x1 = 0.0503, Gr/Re = 76.21, and D = 0.2, which
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Fig. 3. The laminar base velocity profiles at some specific times

for Re = 1000, X/x1 = 0.503, Gr/Re = 86.45, and D = 0.2.
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Fig. 2. The laminar base velocity profiles at some specific times

for Re = 1000, X/x1 = 0.0503, Gr/Re = 76.21, and D = 0.2.
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represents a point at the neutral stability boundary on

the (X/x1, Gr/Re)-plane, as shown later in Fig. 4. Here

T = 2p/X is the period of the imposed pressure gradient,

and x1 is the critical wave frequency of the differentially

heated steady channel flow, and its value is 0.3977 for

Re = 1000, Gr/Re = 79.7, and Pr = 0.7 [16]. It is noted

that the Reynolds number in Ref. [16] is based on the

average velocity of laminar flow, not the centerline

velocity. Fig. 2 shows that the velocity profile is not sym-

metric due to the differentially heated walls. The location

of the peak value of each velocity curve is close to the

side of the hotter wall of y = 1. The peak value of UB

at t = 0.24T (close to the curve of t = T/4 in Fig. 2) is

about 1.34, which is the largest during a cycle. The

smallest peak value of UB is about 0.9, which occurs at

t = 0.74T (close to the curve of t = 3T/4), that is, the

UB decays during half of the period from t = 0.24T

to t = 0.74T and grows during other half of the

period. Fig. 2 demonstrates that the variation of the

velocity is substantial during a cycle. There are

reverse flows near the cooler wall of y = �1 at curves

of t = T/2 and 3T/4.

At higher oscillation frequency and Grashof number

for X/x1 = 0.503, Gr/Re = 86.45, and D = 0.2, Fig. 3

shows that the velocity profile near the cooler wall of

y = �1 is severely distorted and a wide range of reverse

flow is seen during some time interval of a cycle. The

variation of velocity near the cooler wall during a cycle

is also larger than that in Fig. 2. As compared to the iso-

thermal oscillatory channel flow (see Fig. 1 in the paper

of Singer et al. [11]), the range of the reverse flow in Fig.

3 is much wider and the value of UB at y = �0.864 is as
low as �0.133 for t = 3T/4. The largest of the peak value

of UB occurs at t = T/4, which is almost the same as that

in Fig. 2.

2.2. Linear stability analysis

In the linear stability analysis, infinitesimal distur-

bances are imposed on the laminar base flow, thus the

velocity, pressure, and temperature fields can be written

as

~V ¼ UBðy; tÞ~ex þ ~V
0
; p ¼ pBðy; tÞ þ p0;

h ¼ hBðy; tÞ þ h0 ð10Þ

where the prime denotes an infinitesimal disturbance. By

substituting Eq. (10) into (1)–(3) and neglecting the

higher-order terms, the linearized continuity, momen-

tum, and energy equations for the perturbed quantities

become the following:

r � ~V 0 ¼ 0 ð11Þ

o~V
0

ot
þ ð~V 0 � rÞ~UB þ ð~UB � rÞ~V 0

¼ �rp0 þ Gr

8Re2
h0~ex þ

1

Re
r2~V

0 ð12Þ

oh0

ot
þ UB

oh0

ox
þ v0

ohB
oy

¼ 1

RePr
r2h0 ð13Þ

where ~UB ¼ UB~ex, the disturbances of the velocity, pres-
sure, and temperature, assume the following normal

mode forms, respectively:
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~V
0 ¼ ~̂V ðy; tÞeiðaxþbzÞ; p0 ¼ p̂ðy; tÞeiðaxþbzÞ;

h0 ¼ ĥðy; tÞeiðaxþbzÞ ð14Þ

where ~̂V ¼ ðû; v̂; ŵÞ with û, v̂, and ŵ are the velocity com-

ponents in the x-, y-, and z-directions, respectively. Here

a and b are the wavenumbers in the streamwise and

spanwise directions, respectively. By substituting Eq.

(14) into (11)–(13) and eliminating the pressure term,

the linearized momentum and energy equations are as

follows:

o

ot
o2v̂
oy2

� ða2 þ b2Þv̂
� �

¼ 1

Re
o
4v̂

oy4
� 2ða2 þ b2Þ o

2v̂
oy2

þ ða2 þ b2Þ2v̂
� �

� ia
Gr

8Re2
oĥ
oy

� ia UB

o2v̂
oy2

� o2UB

oy2
þ ða2 þ b2ÞUB

� �
v̂

� �
ð15Þ

oĥ
ot

¼ 1

RePr
o2ĥ
oy2

� ða2 þ b2Þĥ
" #

� iaUBĥ�
ohB
oy

v̂ ð16Þ

The associated boundary conditions for non-permeable

rigid walls with fixed but different wall temperatures are

v̂ ¼ ov̂
oy

¼ ĥ ¼ 0; at y ¼ �1 ð17Þ

Eqs. (15) and (16) and the corresponding boundary con-

ditions constitute an eigenvalue problem.

2.3. Energy budget analysis

To understand the driving mechanisms of flow insta-

bility, it is necessary to keep track of the balance of the

disturbance kinetic energy budget, Ek, which is written

as [19,20]

d

dt
ðu02 þ v02 þ w02Þ=2
� �
¼ � u0v0

oUB

oy

� 	
þ Gr

8Re2
hu0h0i � 1

Re
hðru0Þ2 þ ðrv0Þ2

þ ðrw0Þ2i
¼ Es þ Eb þ Ed ð18Þ

where the bracket h i denotes the integration over the

volume of the disturbance wave. The first term on the

right-hand side of Eq. (18) represents the kinetic energy

production by shear, Es, which is the product of the

Reynolds shear stress and flow strain rate. The second

term represents the buoyant production, Eb, which is ab-

sent in the isothermal flow. The third term represents the

energy dissipation, Ed, which is through molecular vis-

cosity. On the neutral stability curve, the net growth

or decay of the disturbances over a cycle is zero. The

velocity disturbance v 0 is directly obtained from Eq.
(15). To obtain the velocity disturbances u 0 and w 0, the

additional linearized equation, as shown in following,

has to be solved.

oĝ
ot

¼ �iaUBĝ� b
oUB

oy
v̂þ 1

Re
o2ĝ
oy2

� ða2 þ b2Þĝ
� �

þ b
Gr

8Re2
ĥ ð19Þ

where ĝ ¼ bû� aŵ and the associated boundary condi-

tion for Eq. (19) is ĝðy � 1; tÞ ¼ 0. By using the lineari-

zed continuity equation, û and ŵ can be written in

terms of v̂ and ĝ as

û ¼ 1

a2 þ b2
ia
ov̂
oy

þ bĝ


 �
ð20Þ

ŵ ¼ 1

a
ðbû� ĝÞ ¼ 1

a
b

a2 þ b2
ia
ov̂
oy

þ bĝ


 �
� ĝ

� �
ð21Þ
2.4. Numerical method

The Galerkin method is used to solve Eqs. (15) and

(16) and their associated boundary conditions (including

Eq. (19) in the energy budget calculation). In this method,

the test (weighted) functions are the same as the base

(trial) functions. Thus the v̂, ĥ, and ĝ are expanded in

the following forms:

v̂ ¼
XN
n¼0

bnðtÞnnðyÞ ð22aÞ

ĥ ¼
XN
n¼0

cnðtÞ/nðyÞ ð22bÞ

ĝ ¼
XN
n¼0

dnðtÞ/nðyÞ ð22cÞ

where bn(t), cn(t) and dn(t) are the unknown coefficients.

We adopt the base functions proposed by Singer et al.

[11] for v̂. The base functions for ĥ and ĝ have slightly

different form [16]. They are

nnðyÞ ¼ ð1� y2Þ2PnðyÞ ð23aÞ

/nðyÞ ¼ ð1� y2ÞPnðyÞ ð23bÞ

where each base function nn(y) or /n(y) satisfies the

boundary conditions and Pn(y) is the Legendre polyno-

mial of order n. Legendre polynomials could provide

good resolution near the wall [21] which is essential for

the computation of flow driven by the imposed oscilla-

tory pressure gradient. By following the similar steps

outlined by Chen and Chung [20], the governing equa-

tions (15) and (16) become

R
da

dt
¼ SaþOa ð24aÞ



Table 1

The effect of the number of the Legendre polynomials on

the growth rate of the disturbance for Re = 1000, Pr = 0.7,

Gr/Re = 94.44, X/x1 = 0.265, D = 0.2, a = 1.003, b = 0

N Growth rate (r)

21 �0.00007817357

31 0.00000151262

41 0.00000151188

51 0.00000151188

61 0.00000151188

71 0.00000151188
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a ¼
fbg
fcg


 �
; R ¼

½D� ½0�
½0� ½H �


 �
;

S ¼
½E� ½G�
½K� ½I �


 �
; O ¼

½F � ½0�
½0� ½J �


 �
ð24bÞ

where the vector a is composed of the unknown coeffi-

cient bn(t) and cn(t). The elements in Eq. (24b) are

Dm;n ¼ �
Z 1

�1

½n0mn
0
n þ ða2 þ b2Þnmnn�dy ð25aÞ

Em;n ¼
1

Re

Z 1

�1

½n00mn
00
n þ 2ða2 þ b2Þn0mn

0
n

þ ða2 þ b2Þ2nmnn�dy ð25bÞ

F m;n ¼ ia
Z 1

�1

f½U 00
B þ ða2 þ b2ÞUB�nmnn � UBnmn

00
ngdy

ð25cÞ

Gm;n ¼ �ia
Gr

8Re2

Z 1

�1

nm/
0
ndy ð25dÞ

Hm;n ¼
Z 1

�1

/m/ndy ð25eÞ

Im;n ¼ � 1

RePr

Z 1

�1

½/0
m/

0
n þ ða2 þ b2Þ/m/n�dy ð25fÞ

Jm;n ¼ �ia
Z 1

�1

UB/m/ndy ð25gÞ

Km;n ¼ �
Z 1

�1

h0B/mnndy ð25hÞ

Lobatto quadrature is used to compute the matrice which

involve the unsteady base velocity and its derivative.

Other matrices are evaluated by using the orthogonality

properties of Legendre polynomials [20]. Following the

same solution procedure employed by Singer et al. [11],

a generalization of Eq. (24) is written as

R
dA

dt
¼ SAþOA ð26Þ

where A is a matrix of solution vector and it has the

form

AðtÞ ¼ PðtÞ expðtQÞ ð27Þ

where Q is a constant matrix, P is a non-singular peri-

odic matrix and its period, T, is the same as that of O
and is imposed by the pressure gradient. Crank–Nicol-

son scheme is chosen for the discretization in time. Gen-

erally, using 250 time steps per cycle are enough to give

results that were indistinguishable from those using

higher time steps. Number of time steps was increased

for the computing at very low oscillation frequency.
The complete set of solution can be captured by initial-

izing A to the identity matrix.

Að0Þ ¼ I ¼ Pð0Þ expð0QÞ ð28aÞ

thus

Pð0Þ ¼ I ð28bÞ

At the end of a period,

AðT Þ ¼ PðT Þ expðTQÞ ¼ Pð0Þ expðTQÞ
¼ expðTQÞ ð28cÞ

If the eigenvalues of A(T) are kj, the associated growth

rates, rj, are

rj ¼
lnðkjÞ
T

ð29Þ

The flow is stable, neutrally stable, or unstable when the

value of the real part of rj is positive, zero, or negative,
respectively. Galerkin method is also used to solve gov-

erning equations of (15), (16), and (19) for the energy

budget analysis. We had applied above solution method

to linear stability of an oscillatory two-phase channel

flow [22]. The effect of the number of the Legendre poly-

nomials on the growth rate for higher Grashof number

(with larger distortion of velocity profile) has been

tested. As shown in Table 1, the growth rate changes

very small for N P 51. Same results are also obtained

for some other cases. Therefore N = 51 is used in all

the computations. In the code verification, our isother-

mal oscillatory plane channel flow results, as shown in

Table 2, agree well with those given by Singer et al.

[11] and Von Kerczek [10].
3. Results and discussion

The parameters of Re = 1000 and Pr = 0.7 were used

in these calculations. Fig. 4 demonstrates the neutral sta-

bility boundaries on the (X/x1,Gr/Re)-plane for the two-

dimensional (solid line) and three-dimensional (dashed

line) disturbances initiated instabilities for oscillation

amplitude, D = 0.2, where x1 = 0.3977 [16]. It is seen

from Fig. 4 that the two-dimensional wave (with zero



Table 2

Comparison of growth rates of an isothermal oscillatory channel flow for Re = 5772.22, a = 1.0206, b = 0, x1 = 0.2694

X D Von Kerczek Singer et al. Our results

Linear Full simulation

x1/22 0.20 +5.0 · 10�3 +5.6 · 10�3 +4.8 · 10�3 +4.8 · 10�3

x1/7 0.20 �8.0 · 10�3 �7.7 · 10�3 �8.2 · 10�3 �8.2 · 10�3

x1/3 0.05 �2.2 · 10�3 �2.2 · 10�3 �2.2 · 10�3 �2.2 · 10�3

x1/3 0.20 �2.6 · 10�2 �2.7 · 10�2 �2.7 · 10�2 �2.7 · 10�2

x1 0.10 �1.0 · 10�3 �1.0 · 10�3 �1.1 · 10�3 �1.0 · 10�3

x1 0.25 �5.5 · 10�3 �5.3 · 10�3 �5.3 · 10�3 �5.3 · 10�3

2x1 0.20 �4.1 · 10�4 �5.7 · 10�4 �5.7 · 10�4 �5.7 · 10�4

4x1 0.20 �5.1 · 10�5 �4.3 · 10�5 �5.2 · 10�5 �5.1 · 10�5

16x1 0.20 +4.6 · 10�9 +4.6 · 10�5 �3.9 · 10�6 +4.6 · 10�7
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spanwise wavenumber) is the least stable mode for flow

oscillation frequency less than 0.21. The critical value of

(Gr/Re)c for the 2-D disturbance changes little for X/x1

between 0.025 and 0.07, then it increases rapidly with the

oscillation frequency until it reaches a peak value at

about X/x1 � 0.21, where the three-dimensional distur-

bance becomes the least stable mode. After that, it falls

down and the (Gr/Re)c decreases with increasing X/x1,

but its decreasing rate is slower. All the least stable

modes for 0.21 < X/x1 < 0.8 are three-dimensional. This

indicates that for higher flow oscillation frequency the

three-dimensional instability initiates in the primary

instability stage, while in the isothermal oscillatory

channel flow and the differentially heated steady channel

flow, the instability starts with 2-D wave, and the 3-D

behavior initiates only after the 2-D waves reach finite

amplitudes. The (Gr/Re)c for the differentially heated

non-oscillatory channel flow is 79.7 for Re = 1000 and
Pr = 0.7 [16]. Fig. 4 shows that the effect of flow oscilla-

tion destabilizes the flow for oscillation frequency of

X/x1 < 0.09, but it begins to stabilizes the flow for

X/x1 between 0.09 and 0.8. This indicates that the effect

of flow oscillation stabilizes the flow except at low oscil-

lation frequency.

Next Fig. 5 plots the variations of the critical wave-

numbers of 2-D and 3-D disturbances with the flow

oscillation frequency along the neutrally stable curve

for D = 0.2. For the two-dimensional wave initiated

instability, the critical streamwise wavenumber, ac,
changes very slightly with the oscillation frequency.

All the ac�s are close to that (=1.02) of the two-dimen-

sional Tollmien–Schlichting (T–S) wave for the iso-

thermal non-oscillatory plane channel flow [23]. At
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X/x1 � 0.21, the least stable disturbance becomes three-

dimensional, and the ac abruptly reduced to 0.52, which

is nearly half of that of the two-dimensional wave at

X/x1 = 0.201. For the 3-D disturbance, the variations

of the ac and the bc, with the oscillation frequency are

small for X/x1 between 0.21 and 0.38. After that, the

trend of ac and bc is different, the ac increases, but bc de-
creases with further increase of X/x1.

The effects of the oscillation amplitude, D, on the sta-

bility characteristics are shown in Table 3. At a low

oscillation frequency of X/x1 = 0.0754, all the values of

(Gr/Re)c�s are smaller than that (79.7) of the differen-

tially heated steady channel flow, that is, the flow oscil-

lation acts to destabilize the flow. It is also seen that the

degree of destabilization increases with oscillation

amplitude at X/x1 = 0.0754. Table 3 also demonstrates

that all the instabilities are initiated by the two-dimen-

sional waves at X/x1 = 0.0754. The variation of the ac
with oscillation amplitude for 2-D wave is very small,

they are very close to that (=1.02) of the isothermal

non-oscillatory plane channel flow.

The oscillation amplitude effect on the stability char-

acteristic has a substantial change at the moderate oscil-

lation frequency of X/x1 = 0.226. The least stable mode

is the 2-D wave for D 6 0.15, while it switches to three-

dimensional disturbance for D P 0.2. This indicates that

the least stable mode tends to become three-dimensional

at higher oscillation amplitudes. The effect of the oscilla-

tion amplitude on the (Gr/Re)c at X/x1 = 0.226 is totally

different from that at X/x1 = 0.0754. All the (Gr/Re)c�s
Table 3

The effects of the oscillation amplitude (D) on the critical values

of Gr/Re and the critical wavenumbers of ac and bc along the

neutrally stable curve at three specify oscillation frequencies for

Re = 1000 and D = 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3

X/x1 D (Gr/Re)c ac bc Mode

0.0754 0.05 79.6 1.04 0 2-D

0.10 79.3 1.04 0 2-D

0.15 78.8 1.04 0 2-D

0.20 78.2 1.05 0 2-D

0.25 77.6 1.05 0 2-D

0.30 76.9 1.06 0 2-D

0.226 0.05 80.7 1.04 0 2-D

0.10 83.6 1.03 0 2-D

0.15 88.3 1.02 0 2-D

0.20 93.0 0.52 0.96 3-D

0.25 96.8 0.42 1.02 3-D

0.30 100.2 0.36 1.05 3-D

0.503 0.05 80.6 1.04 0 2-D

0.10 82.9 0.88 0.59 3-D

0.15 84.8 0.68 0.85 3-D

0.20 86.5 0.61 0.91 3-D

0.25 87.9 0.56 0.95 3-D

0.30 89.2 0.52 0.98 3-D
are larger than 79.7, that is, the flow oscillation acts to

stabilize the flow, and the amount of stabilization in-

creases with oscillation amplitude. The ac�s for the 2-D

waves at X/x1 = 0.226 are also very close to 1.02 of

the T–S wave. When the least stable mode switches to

the three-dimensional disturbance at D = 0.2, the ac is

abruptly reduced to a value of 0.52, which is about half

of that of the T–S wave. The ac for D P 0.2 decreases

with increasing oscillation amplitude.

At higher oscillation frequency of X/x1 = 0.503, the

instability is initiated by the 2-D wave only at the low

oscillation amplitude of D = 0.05, and its ac is also very

close to that of T–S wave. The least stable mode quickly

switches to the three-dimensional at D = 0.1. This shows

that at moderate and high oscillation frequencies, the

least stable disturbances tend to become three-dimen-

sional when the oscillation amplitude exceeds a thres-

hold value. This threshold value is lower when the

oscillation frequency is higher. It is also seen that all the

(Gr/Re)c�s are larger than 79.7 and the amount of stabili-

zation increases with oscillation amplitude at X/x1 =

0.503. For 3-D disturbance, Table 3 shows that the ac
decreases, but the bc increases with the oscillation ampli-

tude. This behavior is different from the effect of oscilla-

tion frequency on the wavenumbers, where generally the

ac increases, but bc decreases with increasing oscillation

frequency, as shown earlier in Fig. 5.

The variation of the root mean square streamwise

perturbation velocity during a cycle may provide infor-

mation on the disturbance development. Some discus-

sions on the r.m.s. streamwise velocity characteristics

for the isothermal oscillatory channel flow can be found

in Singer et. al. [11]. It is defined by

urmsðy; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ûðy; tÞ2

q
ð30Þ

For the instability initiated by the 2-D wave, the

r.m.s. streamwise perturbation velocity profiles at

various times for Re = 1000, X/x1 = 0.0503, D = 0.2,

Gr/Re = 76.21, and a = 1.055, are plotted in Fig. 6(a)–

(h). It is seen that the variation of the amplitude of urms

during a cycle is large. The amplitudes of urms�s from

Fig. 6(a)–(e) are very small (note the large changes in

the scale of the ordinate in Fig. 6(e)–(h)). The urms

grows rapidly at t = 3T/4, and reaches the peak value

at t = 7T/8 in Fig. 6(g). After that it decays very quickly.

Fig. 6(a)–(h) also shows that the profiles of urms�s are not
symmetric, while they are symmetric to the channel cen-

ter (see Figs. 3 and 7 in the paper of Singer et al. [11]) for

the isothermal oscillatory shear flow. As pointed out by

Singer et al. [11], the existence of double peak structure

is an indication that there is an energy exchange between

the base flow and the two-dimensional wave in the re-

gion between the peaks. The urms�s in Fig. 6(f)–(h) also

have double peak structures. This shows that the energy

exchange between the base flow and the waves is strong
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Fig. 6. The root mean square streamwise perturbation velocity profiles for X/x1 = 0.0503, Re = 1000, Gr/Re = 76.21, D = 0.2,

a = 1.055, and b = 0 at various times of (a) T/8, (b) T/4, (c) 3T/8, (d) T/2, (e) 5T/8, (f) 3T/4, (g) 7T/8, and (h) T.
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Fig. 7. The root mean square streamwise perturbation velocity profiles for X/x1 = 0.503, Re = 1000, Gr/Re = 86.45, D = 0.2, a = 0.53,

and b = 0.61 at various times of (a) T/8, (b) T/4, (c) 3T/8, (d) T/2, (e) 5T/8, (f) 3T/4, (g) 7T/8, and (h) T.
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during the time period between t = 3T/4 and T. The

rapid increase of urms indicates that the disturbances

strongly draw energy from the base flow. As shown

before in Fig. 2, the base velocity of UB grows during

half of the period from its smallest value at t = 0.74T

to the largest value at t = 1.24T (the velocity profile at

t = 1.24T is the same with that at t = 0.24T). This indi-

cates that the growth of the disturbance mainly occurs

during the early stage beginning when the UB grows

from its smallest value. It is noted that the locations of

the peak value of urms�s in Fig. 6(a)–(h) are all near the

hotter wall of y = 1, where the base velocities are large.

For the flow instability initiated by the 3-D distur-

bance, Fig. 7(a)–(h) plot the r.m.s. streamwise perturba-

tion velocities for X/x1 = 0.503, D = 0.2, Gr/Re = 86.45,

a = 0.53, and b = 0.61. It is worth noting that the loca-

tions of all the peak values of urms�s are located in the

left-hand side of the channel between y = 0 and y = �1

(cooler wall), while they are located near the hotter wall

for the 2-D disturbance. It is also seen that the ampli-

tudes of urms�s in Fig. 7(a)–(h) are also large through

the whole cycle, that is, its variation of the amplitude

of urms during a cycle is much smaller than that in Fig.

6(a)–(h). All the profiles in Fig. 7(a)–(h) also have

double peak structures. This indicates that the energy

exchange between disturbances and the base flow for

3-D disturbance are generally strong through the cycle.

As indicated in Eq. (18), the development of the dis-

turbance kinetic energy provides information on the

driving mechanisms of flow instability. After one or

two cycles, the disturbance kinetic energy profile

becomes periodic and thus independent of the initial

condition. For the two-dimensional wave at a low oscil-

lation frequency of X/x1 =0.053, Fig. 8 presents the vari-

ation of each kinetic energy budget term with time for

Gr/Re = 76.21, D = 0.2, and a = 1.055. It shows that

the contribution of energy generation from the buoyant

production, Eb, is negligible through the cycle. Thus the

shear production, Es, is responsible for the flow instabil-

ity at X/x1 = 0.053. This type of instability is called ther-

mal-shear instability, where the base velocity profile is

distorted sufficiently to become unstable as a result of

heating, but most of the kinetic energy for the instability

comes from the shear production [20]. Such type insta-

bility also occurs for lower Prandtl number and higher

Reynolds number for the steady heated vertical channel

flow [16].

Fig. 8 shows that the shear production, Es, rises shar-

ply from a small value at about t = 1.75T to a maximum

value at about t = 1.87T. As time progresses, it falls

down abruptly, and becomes near zero at about

t = 1.95T. It is worth noting that the time interval for

the kinetic energy generation by shear to initiate the flow

instability occurs only at about 1/5 period of a cycle. The

Es is negligible or smaller than zero during the rest time

of a cycle. This behavior reflects the characteristic of
urms, where the urms also grows rapidly during a very

short time interval, as shown in Fig. 6(a)–(h). It is also

shown earlier in Fig. 2 that the base velocity begins to

rise from its smallest value at t = 1.74T. This indicates

that almost all of the kinetic energy is generated during

the earlier stage when the base velocity begins to rise

from its smallest value. Fig. 8 also shows that the rapid

increase of Es also induces the quick rising of the kinetic

energy dissipation, Ed. The development process of Ed is

basically similar to that of Es, but it just lags behind Es

for a very short time period. The change rate of distur-

bance kinetic energy budget, dEk/dt, is mainly depen-

dent on Es and Ed. Fig. 8 shows that it rises quickly

with a maximum value at about t = 1.85T and falls

down quickly and becomes negative with a minimum

value at about t = 1.95T.

For the flow instability initiated by the 3-D distur-

bance, Fig. 9 plots the variation of each kinetic

energy budget term with time from for X/x1 = 0.503,

Gr/Re = 86.45, D = 0.2, a = 0.61, and b = 0.91. The

curve of Es or dEk/dt has double peaks during a cycle.

The main difference of Es between Figs. 8 and 9 is that

the shear production is generated during most of the

time of a cycle for the 3-D disturbance, while it is gener-

ated during only about 1/5 period of a cycle for the 2-D

disturbance. The buoyant production in Fig. 9 is also

negligible through the cycle. Thus it also belongs to ther-

mal-shear instability at higher oscillation frequency. The

kinetic energy dissipation, Ed, in Fig. 9 is more uni-

formly distributed through the whole cycle, while it is

close to zero about 4/5 period of a cycle in Fig. 8. This

characteristic of Es in Fig. 9 also reflects the behavior
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of the urms. As shown earlier in Fig. 7, the urms�s are large
and their amplitudes are about the same order during a

cycle. Thus the continuing existence of larger urms will

result in the longer shear production and energy

dissipation.
4. Conclusions

The linear stability of an oscillatory shear flow in a

differentially heated vertical channel was investigated

numerically. The parameters of Re = 1000 and Pr = 0.7

were used in these calculations. The results show that

the least stable mode is the two-dimensional wave at

low oscillation frequency and it tends to switch to

three-dimensional disturbance at higher oscillation fre-

quency. Generally, the critical value of (Gr/Re)c rapidly

increases with the increasing oscillation frequency for

the 2-D wave, and it gradually decreases with the

increasing oscillation frequency for the 3-D disturbance.

The flow oscillation acts to stabilize the flow at moderate

and high oscillation frequencies except at low oscillation

frequency.

The effect of oscillation amplitude shows a substan-

tially different trend. For the oscillation amplitude, D,
up to 0.3, all the least stable modes are dominated by

2-D waves at low oscillation frequency. Also, the flow

oscillation acts to destabilize the flow and the amount

of destabilization increases with the oscillation ampli-

tude; but the least stable mode tends to become three-

dimensional when the oscillation amplitude exceeds a

threshold value at moderate and high oscillation fre-
quencies. This threshold value is lower when the oscilla-

tion frequency is higher. Also, the flow oscillation acts to

stabilize the flow and the degree of stabilization in-

creases with the oscillation amplitude. All the critical

wavenumbers for 2-D waves are very close to that

(1.02) of Tollmien–Schlichting wave in the isothermal

steady channel flow regardless of the oscillation ampli-

tude and the oscillation frequency.

The instability type is the thermal-shear instability,

where energy production by shear, Es, is the driving

mechanism for the flow instability. The characteristics

of the Es and the root mean square streamwise perturba-

tion velocity, urms, are distinctively different between 2-D

and 3-D disturbances. For the former, the peak value of

urms is located near the hotter wall. The urms and Es grow

sharply when the base velocity begins to rise from its

smallest value, and after reaching the peak value they

decays rapidly during a short time interval, thus almost

all the Es is produced during only about 1/5 period of a

cycle at low oscillation frequency. For the latter, the

peak value of urms is located between channel center

and cooler wall, where a wide range of the reverse flow

exists near the cooler wall. The amplitudes of urms�s
are large through the whole cycle, thus the Es is generally

generated during most of the time of a cycle.
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